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Abstract

Near-infrared (NIR) spectroscopy has been successfully utilized for the rapid identification of green, black and Oolong tea. The spectral features
of each tea category are reasonably differentiated in the NIR region, and the spectral differences provided enough qualitative spectral information
for the identification of tea. Support vector machine (SVM) as the pattern recognition was applied to identify three tea categories in this study.
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he top five principal components (PCs) were extracted as the input of SVM classifiers by principal component analysis (PCA). The RBF SVM
lassifiers and the polynomial SVM classifiers were studied comparatively in this experiment. The best experimental results were obtained using
he radial basis function (RBF) SVM classifier with σ = 0.5. The accuracies of identification were all more than 90% for three tea categories.
inally, compared with the back propagation artificial neural network (BP-ANN) approach, SVM algorithm showed its excellent generalization
or identification results. The overall results show that NIR spectroscopy combined with SVM can be efficiently utilized for rapid and simple
dentification of the tea categories.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Tea is one of the most popular beverages worldwide, which is
f great interest due to its beneficial medicinal properties [1–6].
here are many different tea categories throughout the world,
hich are usually classified as green tea, black tea, Oolong tea,
ellow tea, white tea and dark compressed tea. Green tea, black
ea and Oolong tea are among the most popular categories across
he world. Drying after roasting the leaves produce green tea,
nd with black tea, leaves are additionally fermented. If this
ermentation is partially carried out, an intermediate kind of tea
s obtained—the Oolong tea. In the fermentation, the enzymatic
xidation of tea polyphenols takes place leading to the formation
f chemical compounds. Therefore, the different tea categories
ossess the different chemical and medical properties.

∗ Corresponding authors. Tel.: +86 511 8780308; fax: +86 511 8780201.
E-mail addresses: zhao@ujs.edu.cn (J. Zhao), q.s.chen@hotmail.com

Q. Chen).

Nowadays, the identification of a tea category is performed
according to various wet chemical methods such as high-
performance liquid chromatography (HPLC) [7,8], gas chro-
matographic (GC) [9], capillary electrophoresis [10], plasma
atomic emission spectrometry [11], etc. However, all of the
methods mentioned above are time-consuming in identification
of tea.

Near-infrared (NIR) spectroscopy has been proved to be a
powerful analytical tool. It has been applied widely in the agri-
cultural, nutritional, petrochemical, textile and pharmaceutical
industries, especially the application of NIR spectroscopy for the
qualitative and quantitative analysis of pharmaceutical samples
has been significantly increased during the last decade [12–16].
It is known today that many studies have applied near-infrared
reflectance spectroscopy to tea. Since the 1990s, attempts have
been made to simultaneously predict some chemical compo-
sitions in green tea leaves using NIR spectroscopy technique
[17,18]. Studies on the application of NIR spectroscopy to quan-
titative analysis of total antioxidant capacity in green tea are
also reported recently [19,20]. However, most of these were
731-7085/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
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quantitative analyses, and few studies report applications of NIR
spectroscopy to qualitative identification of tea categories.

As a new pattern recognition method, support vector machine
(SVM) is incomparable to others in chemometrics, which has a
good theoretical foundation in statistical learning theory. SVM
fixes the classification decision on structural risk minimization
(SRM) instead of the traditional empirical risk minimization
(ERM). Therefore, the model by training avoid over-fitting prob-
lem [21]. It performs binary classification problem by finding
a hyperplane with maximal margin in terms of a subset of the
input data (support vectors). If the input data are not linearly
separable, SVM firstly maps these data into a high-dimensional
feature space to transform a linearly separable problem, and then
classifies these data by hyperplane. Moreover, SVM is capa-
ble of learning in high-dimensional feature space with fewer
training data. Recently, SVM has been successfully applied to
NIR spectroscopy non-linear prediction model [22,23], but few
studies have been reported in the qualitative analysis using NIR
spectroscopy technique combined with SVM pattern recogni-
tion method. Therefore, NIR spectroscopy combined with SVM
pattern recognition method was proposed to identify rapidly and
simply tea categories in this study.

2. Materials and methods
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The standard quartz cup was used for performing the tea spec-
tra collection. For each tea sample, respectively, 10 ± 0.1 g of tea
powder was filled into the quartz cup in the standard procedure
depending upon the bulk density of materials. The correspond-
ing amount of powder was densely packed into the quartz cup
and then compressed by closing it. Each tea sample was col-
lected three times after rotating the cup at 120◦. The mean of the
three spectra which were collected from the same tea sample
was used in the following analysis step. The temperature was
kept around 25 ◦C and the humidity was kept at a steady level
in the laboratory.

2.3. Preprocessing methods

In this study, three data preprocessing method were applied
comparatively; these were standard normal transformation
(SNV), first derivative, second derivative, etc. SNV is a mathe-
matical transformation method of the log (1/R) spectra used to
remove slope variation and to correct for scatter effects. Com-
pared to SNV, first and second derivatives eliminate baseline
drifts and small spectral differences are enhanced. To avoid
enhancing the noise, which is a consequence of derivative, spec-
tra are first smoothed. This smoothing is done by using the
Savitzky–Golay algorithm [24], which is a moving window aver-
aging method: a window is selected where the data are fitted by a
polynomial of a certain degree. The central point in the window
i
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.1. Sample preparation

All tea samples of three categories came from different
rovinces in China. Tea categories, origins and the numbers of
amples are shown in Table 1. Each tea category has some dif-
erent brands, which come from different provinces in China.

All tea materials were already in stock within a 4 months
eriod. Taking into consideration the heterogeneity of tea sam-
les, major attention was paid to the sampling stage. The samples
ere ground before analysis. For the grinding, the whole tea

eaves were put into a small electric coffee mill and ground for
0 s. After this procedure, the powders were sieved with a mesh
idth of 500 �m and these sieved powders were used for the

ubsequent analyses.

.2. Spectra collection

The NIR spectra were collected in the reflectance mode using
NEXUS 670 FT-IR spectrophotometer (Nicollet, USA) with

n optical fiber. Each spectrum was the average spectrum of 64
cans. The spectral used for the data analysis covered the range
rom 11000 cm−1 to 3800 cm−1, and the data were measured in
.928 cm−1 intervals, which resulted in 3735 variables.

able 1
ategories, numbers and origin of tea samples

ea categories Samples
numbers

Tea origins

reen tea 50 Zhejiang, Anhui, Jiangsu, Fujian, Henan
lack tea 50 Jiangsu, Sichuan, Anhui, Jiangxi, Yunnan
olong tea 50 Anhui, Fujian
s replaced by the value of the polynomial.

.4. Basic principle of SVM

SVM is a new generation of learning systems based on statis-
ical learning theory as proposed by Vapnik and Chervonenkis
25,26]. Here, a brief introduction of SVM is presented, and
eaders can refer to the tutorials on SVM [27–29] for details.

The basic SVM deals with two-class problems, in which the
ata are separated by a hyperplane defined by a number of sup-
ort vectors. The SVM can be considered to create a hyperplane
etween two sets of data for classification. In case of two-
imensional situation, the action of the SVM can be explained
asily following as Fig. 1. A series of points for two different

ig. 1. Classification of data by SVM. The solid line and dashed line denote the
yperplane and margins, respectively. Squares and circles denote the negative
nd the positive training samples, respectively. The grey ones in margins denote
he support vectors.
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classes of data are shown, squares (class A) and circles (class B).
The SVM tries to set an appropriate boundary so that the distance
between the boundary and the nearest data point is maximal. The
boundary is then placed in the middle of this margin. The near-
est data points that are used to define the margins are known as
support vectors (SVs, represented by grey circles and squares).
Once the support vectors are selected, the rest of the feature set
can be discarded, because SVs contain all the necessary infor-
mation for the classifier.

Considering a two-class classification problem with k labeled
training samples, it is represented by {(xi,yi)|i = 1, 2, . . ., k}
where x ∈ Rn is a n-dimensional vector and y ∈ {−1,+1} is the
class label. The boundary can be expressed as follows:

{(x, y)|y = (ω · x) + β, ω ∈ Rn, β ∈ R} (1)

where the vector ω defines the boundary and β is a scalar thresh-
old. At the margins, where SVs are located; the equations for
classes A and B, respectively, are as follows:

(ω · x) + β = −1 (2)

(ω · x) + β = +1 (3)

As SVs correspond to the extremities of the data for a given
class, the following decision function can be used to classify any
data point in either class A or B:
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Minimize

τ(w) = min
ω,β,ξ1...ξk

[
1

2
‖ω‖2 + C

k∑
i=1

ξi

]
(7)

subject to

yi(ω · xi + β) − 1 + ξi ≥ 0 (8)

where the parameter C is a penalty coefficient, and it deter-
mines the tradeoff between minimizing the training error and
minimizing model complexity. The solution of the constrained
optimization problem can be obtained as follows:

ω =
∑

i

yiαixi; αi ≥ 0 (9)

where αi is called Lagrange multipliers and xi is a support vector
obtained from training. Putting (9) in (4), the decision function
is obtained as follows:

f (x) = sign

⎧⎨
⎩
∑
i,j

αiαjyiyj(xi · xj) + β

⎫⎬
⎭ (10)

In cases where the linear boundary in input spaces will not be
enough to separate two classes properly, it is possible to create a
hyperplane that allows linear separation in the higher dimension
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(x) = sign((ω · x) + β) (4)

The aim is to find a hyperplane that can be used to classify
hese data points between classes A and B. The optimal hyper-
lane separating the data can be obtained as a solution to the
ollowing optimization problem:

Minimize

(ω) = min
ω,β

{
1

2
‖ω‖2

}
(5)

ubject to

i((ω · xi) + β) ≥ 1. (6)

In case there is an overlap between the two classes, a slack
ariable ξi,i = 1, . . ., k can be introduced. The optimization prob-
em changes as follows:

ig. 2. Non-linear separation of input and feature space. Squares and circles d
on-linear separation in input space, and linear separation in feature space.
corresponding to curved surface in lower-dimensional input
pace). In SVM, this is achieved through the use of a transforma-
ion function Φ(x) that converts the data from an n-dimensional
nput space to ε-dimensional feature space:

= Φ(x) (11)

here x ∈ Rn and s ∈ Rε. Fig. 2 shows the transformation from
he input space to the feature space where the non-linear bound-
ry has been transformed into a linear boundary in feature space.
he transformation into higher-dimensional feature space is rel-
tively computation-intensive. A kernel can be used to perform
his transformation and the dot product in a single step provided
he transformation can be replaced by an equivalent kernel func-
ion. This helps in reducing the computational load and at the
ame time retaining the effect of higher-dimensional transfor-
ation. The kernel function K(xi,xj) is defined as follows:

(xi, xj) = Φ(xi) · Φ(xj). (12)

the negative and the positive training samples, respectively. These points are
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Nowadays, the popular kernel functions are the radial basic
function (RBF), polynomial, sigmoid kernel function, etc., as
follow:

RBF kernel function : K(xi, xj) = exp

(
−
∥∥xi − xj

∥∥2

2σ2

)
;

(13)

polynomial kernel function : K(xi, xj) = (1 + xi · xj)σ ; (14)

sigmoid kernel function : K(xi, xj) = tanh(σ(xi · xj) + υ).

(15)

Finally, the basic form of SVM is accordingly obtained after
substituting (12) in the decision function (10) as follows:

Y = sign

⎧⎨
⎩
∑
i,j

αiαjyiyjK(xi, xj) + β

⎫⎬
⎭

2.5. Software

All SVM algorithms were implemented with Matlab V6.5
(Mathworks, USA) under Windows XP. The implementation of
Multi-class SVM [30] algorithm was used for the classification
of tea in all experiments. For the spectral acquisition, OMNIC
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such as polyphenols, alkaloids, protein, volatile and non-volatile
acid and some aroma compounds.

In general, the water content in the dry tea leaves is up to 4–6%
(w/w), therefore, the effect of water must be considered. To
keep away from the water absorption band, the spectral regions
between 5300 cm−1 and 6500 cm−1 were selected, because there
is a great deal of information from organic substances in this NIR
spectroscopy region according to the spectra investigation.

3.2. Principal components analysis (PCA)

All NIR spectral data from three tea categories were used for
the PCA. Although PCA itself cannot be used as a classification
tool, this behavior may indicate the data trend in visualizing
dimension spaces. For visualizing the data trends and the dis-
criminating efficiency of the three NIR spectral preprocessing
methods, the scatter plots of data using the top three principal
components (PCs) issued from PCA were obtained as showed
in Fig. 4(a–c). As can be seen, SNV preprocessing method
is superior to the other preprocessing methods. SNV prepro-
cessing method removed physical spectral information (due to
particle size), so that PCA was performed based on mainly chem-
ical spectral information. On the other hand, SNV decreased
the within-class variance. Fig. 5(a) and (b) show the spectra
of Oolong tea without and with SNV preprocessing method,
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obtai
.2a (NEXUS 670 FT-IR Systems) was used.

. Results and discussion

.1. Spectra investigation

Fig. 3(a) shows the mean spectra of each class for the original
ata. The spectra of each class after first derivative preprocessing
re presented in Fig. 3(b). As seen from Fig. 3(a) and (b), there
re water absorption bands around 5155 cm−1 and 7000 cm−1

orresponding to O H stretching + O H deformation. These
ere excluded during analysis along with some regions exhibit-

ng a high noise level (e.g. 11000 − 9000 cm−1; Fig. 3(b)).
Also seen from Fig. 3(b), the most intensive band in the spec-

rum belonged to the vibration of the second overtone of the car-
onyl group (5352 cm−1), followed by the C–H stretch and C–H
eformation vibration (7212 cm−1), the –CH2 (5742 cm−1), and
he –CH3 overtone (5808 cm−1). The vibration of the carbonyl
roup, the –C–H and –CH2 vibrations are caused by ingredients

Fig. 3. Mean spectra for the three categories of tea
espectively. In the raw spectra, a small offset can be observed
n some spectral regions such as the lower wavenumbers regions.
hese phenomena typically occur in powdered materials due to
ultiplicative effects of scatter and particle size. They are often

orrected by SNV preprocessing method over the entire spectral
ange. Therefore, we selected the SNV preprocessing method in
his study.

As shown in Fig. 4(a), there was clear cluster trend these
ata in the three-dimension (3D) principal component space
epresented by the top three principal components (i.e. PCs
–3) vectors. Such good classification in this 3D space could
e explained by the chemical background of tea and PCA
ethods. The different tea categories can exhibit considerable

ifferences in their botanical, genetic, agronomical, character-
stics, however, more connected with the different tea process.
he differences detected in chemical compositions of the dif-

erent tea categories can be reasonably differentiated in the
IR spectroscopy region. Therefore, in the NIR spectroscopy

egion, these spectral differences provided enough information

ned from (a) raw data and (b) first derivative date.
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Fig. 4. Score cluster plot with top three principal components (PCs) for training
set samples of green tea (©), black tea (+) and Oolong tea (*). Score cluster
obtained from (a) SNV data, (b) first derivative data and (c) second derivative
data.

for further qualitative analysis. In additional, through PCA, the
accumulated variance contribution rate was up to 94.7% for the
top three PCs, in other words, the 3D space represented by PCs
1–3 vectors can explain 94.7% chemical composition informa-
tion in the NIR spectroscopy region. Thus, the 3D space can
almost express fully the information that all data are distributed
in an ultra-dimensional space.

Investigated from Fig. 4(a), green tea class is first close to
Oolong tea class in the 3D space, and next to black tea class.
Such phenomena can be explained by the inner chemical compo-
sitions from tea. Although they come from the leaves of the plant
Camellia sinensis, however, the process that the leaves undergo
to make the final dry tea is different. The leaves for black tea
are fully fermented; however, those for green tea are lightly
steamed before being dried. Therefore, these chemical compo-
sitions differ in their chemical structure. For example, green tea
leaves contain more of the simple flavonoids called catechins,
while the oxidization that the leaves undergo to make black tea
converts these simple flavonoids to the more complex chemical
compositions called theaflavin and thearubigins. Oolong tea is
a partially fermented leaf, with the flavonoids profile midway
between green and black tea, therefore, its quality also repre-
sents a middle trait between green and black tea.

3.3. Support vector machine classification
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Fig. 5. Spectra for Oolong tea obtained fr
In this study, green tea, black tea and Oolong tea would be
lassified through SVM, therefore, it is a problem of multi-
lass classification. SVM is usually solved by a decomposing
nd reconstruction procedure when two-class decision machines
re implied. In the standard decomposing scheme of a multi-
lassification problem into dichotomies [30], SVM is trained
ver all the training patterns with the 1-v-r (one versus the rest)
ethod. SVM assign label +1 to the samples in the ith class, and

abel −1 to all the other samples.
In this experiment, three tea categories in all 150 tea samples

ere tried. In order to come to a 3/2 division of training/test
ata, 90 data (i.e. 30 green tea samples, 30 black tea samples
nd 30 Oolong tea samples) were selected in the training set,
nd the remaining 60 data (i.e. 20 green tea samples, 20 black
ea samples and 20 Oolong tea samples) were selected in test
et.

Firstly, the top five principal components (i.e. PCs 1–5) vec-
ors were extracted by PCA. These vectors were input to the

om (a) raw data and (b) SNV data.
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Table 2
The identification results with RBF SVM classifiers for training

Tea categories Sample numbers Classification results of RBF SVM classifiers in different parameters (σ)

0.2 (%) 0.5 (%) 0.8 (%) 1.0 (%) 1.2 (%) 1.5 (%) 2.0 (%) 2.5 (%)

Green tea 30 83.33 96.67 96.67 96.67 96.67 96.67 96.67 96.67
Black tea 30 96.7 100 96.67 96.67 96.67 93.3 90 86.67
Oolong tea 30 70 93.33 86.7 86.7 86.67 80 70 70

Table 3
The identification results with polynomial classifiers for training

Tea categories Sample numbers Identification results of polynomial classifiers in different the parameter (σ)

1 (%) 2 (%) 3 (%) 4 (%)

Green tea 30 80 93.33 93.33 96.67
Black tea 30 83.33 100 100 100
Oolong tea 30 66.67 93.33 93.33 90

SVM classifiers as latent variables. Through PCA, the accumu-
lated variance contribution rate was up to 99.2% for the top five
PCs, in other words, PCs 1–5 could load 99.2% of the whole
spectral information; moreover, much repetitious spectral infor-
mation was also removed. In fact, the experimental results were
proved to the best when PCs 1–5 vectors were used.

Next, to obtain a good performance, the type of kernel func-
tion and some parameters in SVM have to be chosen carefully.
We only focus on the polynomial kernel function and the RBF
kernel function in this paper, because they were applied widely
and their theories systems are also more mature than other kernel
functions [26,31,32].

These parameters include:

(1) The kernel function parameter σ in Eqs. (13)–(15): an inap-
propriate choice of parameter σ may eliminate any biased
performance of the SVMs, therefore, the parameter σ was
focused on as an important point investigated.

(2) The regularization parameter C in Eq. (14): it determines
the tradeoff between minimizing the training error and min-
imizing model complexity. As a penalty parameter, its value
is often determined by experiment. The parameter C is set as
a default value in case its effect on the classification result is
few. In fact, we attempted some different C values in exper-
iment; its effect on classification result is actually very few.

p
1
3

w

resulted in the best results. The best identification accuracies are
96.67%, 100% and 93.33% for green tea, black tea and Oolong
tea, respectively.

Table 3 shows the identification results of the polynomial
SVM with these different parameters (σ). The polynomial SVM
classifier with parameter σ = 2 achieves the best results, and they
are 93.33%, 100% and 93.33%. In fact, when the parameter σ is
more than 2, the effect on the identification results is very few;
however, the effect on the run time for the SVM algorithm is very
severe. With increasing in the value of the polynomial degree,
run time increases sharply. In additional, the polynomial SVM
classifier with the parameter σ = 1 is a linear SVM classifier,
which performs worse than any other classifiers with only 80%,
83.33% and 66.67%.

According to Tables 2 and 3, the best parameters were
selected in the test experiments, which followed as: σ = 0.5 for
RBF SVM classifier and σ = 2 for polynomial SVM classifier.
Under these best parameters, the identification results are listed
in Table 4. Seen from the whole, the RBF SVM classifier is a
little better than the polynomial SVM classifier. The best pre-
diction results are 95%, 100% and 90%, respectively.

To highlight the good performance with the generalization
in the SVM algorithm, we attempted to compare the results by
SVM with by back propagation artificial neural network (BP-
ANN) approaches in this study. Just as the SVM approach, PCs
1–5 vectors were also input to the BP-ANN in the experiment.
T

T
T

T

G
B
O

In additional, optimizing simultaneously the two (C,σ) is
more time-consuming for SVM approaches. Therefore, it
was set as the default value 100 in this paper, and only the
parameter (σ) was optimized in the experiment.

In the experiment, a range of parameters (σ) for RBF and the
olynomial SVM classifiers were selected: σ ∈ {0.2, 0.5, 0.8,
.0, 1.2, 1.5, 2.0, 2.5} for the RBF SVM classifiers; σ ∈ {1, 2,
, 4} for the polynomial SVM classifiers.

Table 2 shows the identification results of the RBF SVM
ith these different parameters (σ). The RBF kernel with σ = 0.5
able 5 shows the different identification results by SVM and

able 4
he identification results with polynomial classifiers for test

ea categories Sample
numbers

Identification results in the two classifiers

RBF SVM
classifier (%)

polynomial SVM
classifier (%)

reen tea 20 95 95
lack tea 20 100 100
olong tea 20 90 85
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Table 5
Comparison between the SVM and BP-ANN approaches for train and test set

Identification results
in training set

Identification results
in test set

SVM (%) BP-ANN (%) SVM (%) BP-ANN (%)

Green tea 96.67 96.67 95 75
Black tea 100 100 100 100
Oolong tea 93.33 96.67 90 80

BP-ANN approaches in training and test set. Seen from the
Table 5, the identification results by SVM are almost the same
as by BP-ANN approach in training set; however, the results by
SVM are obviously better than by BP-ANN approach in test set.
The reasons that come to such phenomena might be explained
by their basic theories of algorithm.

Traditional neural network approaches including BP-ANN
are based on the empirical risk minimization (ERM) principle.
They suffer difficulties with generalization, producing models
that can over-fit the data. The ‘best’ mode by training often
results in worse predictive result, in other words, the generaliza-
tion of the model is worse [32].

The foundation of SVM embodies the structural risk mini-
mization (SRM) principle, which has shown to be superior to the
ERM principle. SRM minimizes an upper bound on the expected
risk, as opposed to ERM that minimizes the error on the training
data [21,32]. Therefore, SVM embodies the excellent gener-
alization in its theory, which results in the better results than
BP-ANN approach in the experiment.

4. Conclusion

It can be concluded that the NIR spectroscopy technique
based on support vector machine has high potential to identify
the tea category in a nondestructive way. Three tea categories
(
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